A Remark on the Rank Conjecture

نویسنده

  • ROB DE JEU
چکیده

We prove a result about the action of λ-operations on the homology of linear groups. We use this to give a sharper formulation of the rank conjecture as well as some shorter proofs of various known results. We formulate a conjecture about how the sharper formulation of the rank conjecture together with another conjecture could give rise to a different point of view on the isomorphism between CHp(F, n) ⊗Z Q and K n (F) for an infinite field F , and we prove part of this new conjecture. Mathematics Subject Classifications (2000): 19D55, 19E15 (11R70, 55S25).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

Remark on the rank of elliptic curves

A covariant functor on the elliptic curves with complex multiplication is constructed. The functor takes values in the noncommutative tori with real multiplication. A conjecture on the rank of an elliptic curve is formulated.

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

A Remark on Minimal Fano Threefolds

Abstract. We prove in the case of minimal Fano threefolds a conjecture stated by Dubrovin at the ICM 1998 in Berlin. The conjecture predicts that the symmetrized/alternated Euler characteristic pairing on K0 of a Fano variety with an exceptional collection expressed in the basis of the classes of the exceptional objects coincides with the intersection pairing of the vanishing cycles in Dubrovin...

متن کامل

On the Elliptic Curves of the Form $y^2 = x^3 − pqx$

‎By the Mordell‎- ‎Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves‎, ‎where p and q are distinct primes‎. ‎We give infinite families of elliptic curves of the form y2=x3-pqx with rank two‎, ‎three and four‎, ‎assuming a conjecture of Schinzel ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016